
pronexus.com | 2934 Baseline Road, Suite 301, Ottawa, ON Canada K2H 1B2 | Tel +1.877.766.3987 | Fax +1.613.271.8388

Selecting an Interactive
Voice Response Rapid
Application Development
Tool

pronexus.com | 2934 Baseline Road, Suite 301, Ottawa, ON K2H 1B2 | Tel +1.877.766.3987 | Fax +1.613.271.8388

- 2 -

Selecting an Interactive Voice Response Rapid Application
Development Tool

VBVoice
Companies around the world use Pronexus VBVoice® in
numerous industries ranging from banking, government,
healthcare, insurance, utilities and many more. Service
providers and in-house developers can reduce IVR
application development time and bring their IVR solutions
to market faster with VBVoice. The new look of VBVoice
is designed to complement Microsoft® Windows® 10 and
uses the Visual Studio® library of icons. Additionally, an
updated color palette, to link types of controls, assisting
developers to analyze their call flow at a glance, is
included.

Now developers also have the option to deploy data-only
IVR applications using the VisualConnect™ module.
VisualConnect data applications run on any device that
supports HTML 5 and each visual prompt can be played
aloud with no telephony boards or speech licenses
required. IVR developers can deploy IVR applications
hosted entirely in the cloud.

VBVoice 10 offers developers a fresh look and feel
designed to facilitate rapid IVR development, as well as
features to optimize IVR applications for deployment in
cloud environments and offer developers greater control
and visibility into their application’s progression. Other
features include centralized diagnostic logging, media
resource control protocol (MRCP) redundancy, dial control
improvements, support for high availability and text
serialization of controls’ properties to allow developers to
employ version control in a more effective way.

What Should you Consider when
Selecting an IVR Tool?
IVR streamlines internal processes, improves customer
care and increases the bottom line through efficiencies
and reduced overhead costs. Developers choosing an
IVR product face a number of hardware and software
choices. Chief among these decisions is the choice of
development environment – it can determine success or
failure of a development initiative and make the difference
between a profitable project rollout or a costly failure. This
document highlights some of the critical issues that should
be considered:

• Ease of use

• Industry-standard language

• Debugging

• Modularity

• Architecture

• Rapid application development tools

• Speech processing

• Automatic speech recognition (ASR)

• Text to speech (TTS)

• Deployment considerations

• Support for standards

Why Choose VBVoice?
• Create sophisticated IVR applications using familiar

programming skills and industry-standard programming
languages (C#, .NET)

• Leverage leading speech and telephony technologies

• Cut development time with:

• Visual call flow environment

• Fully customizable voice controls

• Event-driven framework

• Source-level debugging

• Give your project a head start with:

• Prompt library (English [UK & US], French, German,
Italian, Japanese, Spanish (Castilian & South
American)

• Sample applications (e.g. help desk, speech
attendant, fax service, predictive dialer, etc.)

Best of all, VBVoice is available free of charge!
Download your free copy of VBVoice 10.2
from pronexus.com or vbvoice.com today!

pronexus.com | 2934 Baseline Road, Suite 301, Ottawa, ON K2H 1B2 | Tel +1.877.766.3987 | Fax +1.613.271.8388

- 3 -

Selecting an Interactive Voice Response Rapid Application
Development Tool

Ease of Use
The ideal programming environment should accomplish
a number of goals, the most important being ease of use.
To maximize ease of use, most telephony and speech
toolkits offer a degree of visual programming through a
drag-and-drop style interface.

However, while visual programming has the potential
to greatly enhance ease of use, it can also become a
limiting factor. A short learning curve sometimes comes
at the expense of other developer productivity aspects
that may only become obvious after the tool is in use
(e.g., extensibility is key among these). The developer’s
ability to extend the visual programming environment by
using modern programming languages to incorporate
other components not provided by the toolkit or to
take full advantage of new hardware and software is
critical for most real-world telephony applications. For
example, the ability to integrate with .NET environments
and applications is an increasingly significant decision
criterion.

Industry-standard Language
To further shorten the learning curve for developers new
to telephony and speech, the programming language
should ideally be industry standard (e.g., C#, .NET) and
not proprietary to the selected tool.

While most development environments for computer
telephony applications allow for the addition of external
functionality, some require knowledge of proprietary
scripting languages or handling of complex, low-level
programming. The preferable application development
environment will enable developers to leverage their
programming knowledge and expand on the telephony
controls included in the toolkit through custom code, as
well as make use of third-party components.

Debugging
The right development and debugging tools can save
your project. Attempting to uncover call flow or recognition
problems in an application without a rich set of tools
sharply reduces developer productivity and increases
error rates of the final application.

Ideally, the chosen programming environment should:

• Tie into an industry-standard debugging platform that
you or your developers are already familiar with

• Have the ability to generate sophisticated call log files
for further analysis

Together these characteristics allow developers to
create sophisticated and powerful applications without
a long learning curve and ongoing trial and error during
application development.

Modularity
The ability to break your speech application into co-
operating modules is a must. Not only does it improve
scalability, reliability and performance of your system,
but it also saves you money in both development and
production.

A modular system is cheaper to build and maintain.
In development, programmers benefit from working
in parallel on well-defined modules. In production,
independent module provisioning and software hot swaps
eliminate costly system downtimes. At the same time,
separating application logic from telephony and speech
processing allows resource sharing, which in turn leads to
more efficient utilization. Finally, distributing your modules
across a local area network (LAN) enables load balancing
and effortless scalability (again resulting in savings on
system maintenance).

However, the biggest benefit comes from increased
reliability of a modular system. Nothing is more frustrating
to callers than a system that crashes into “dead silence”
in the middle of a transaction. An unreliable system will
be soon pulled out of production, which always means
significant financial losses.

A monolithic executable is only as reliable as its weakest
component, while a modular system can stay operational
even after losing one of its modules. Therefore, it
is very important that application modules execute
properly separated from each other and from the system
processes, so that a fatal error in one doesn’t bring
down the whole system. The modules should run out of
process, or even better, distributed across a LAN. Ideally,
modules should be compiled directly into standalone

pronexus.com | 2934 Baseline Road, Suite 301, Ottawa, ON K2H 1B2 | Tel +1.877.766.3987 | Fax +1.613.271.8388

- 4 -

Selecting an Interactive Voice Response Rapid Application
Development Tool

executables, not into intermediate scripts or p-code.
Not only does this speed up program execution, it also
removes the dependency on a shared runtime engine as
a single point of failure.

Architecture
The architecture of your platform should offer proven
scalability and the ability to hot swap applications. It is
important that applications can execute independently
from each other and from the system processes, can be
hot swapped, easily provisioned and configured.

In hosting environments or in situations where multiple
applications are being deployed, the platform should
enable the sharing of telephony resources (e.g.,
speech licenses, telephony hardware) across multiple
independent applications. Such a distributed architecture
also allows individual applications to be interrupted for
upgrades or other maintenance without interrupting other
applications on the same server.

While some environments allow the sharing of telephony
hardware and hot swapping of applications, developers
should ensure that the platform doesn’t create a
monolithic executable for multiple applications. In such
a system, the failure of one module could stop the entire
system, as the monolithic executable is only as reliable
as its weakest module.

While your code may be bulletproof, can you guarantee
the same for all the components and libraries you have to
use?

Rapid Application Development
Tools
The world of telephony and speech applications is a
complex one, with multiple hardware and programming
interfaces and a plethora of standards. The resulting
learning curve for new developers tends to be very steep.
This is where rapid application development tools really
shine.

Their controls encapsulate and abstract common call
processes to simplify application development and shield
the developer from hardware specific programming. In
evaluating your application development tool, you should
look not only at the raw number of these controls, but
rather at their depth, customizability and extensibility.

Otherwise, you may find that the feature you are looking
for is simply not doable in the environment of your choice.

The tool should also support advanced protocols such as
integrated services digital network (ISDN) and voice over
internet protocol (VoIP) and offer a comprehensive lineup
of call control features for your particular application. For
example, call queuing, agent monitoring, recording and
conferencing capabilities are significant in call center
applications, while other solutions may require broad fax
support, web integration, switch integration via telephone
application programming interface (TAPI), etc.

ASR
The implementation of an effective ASR solution can
reduce the number of agents, supervisors, trainers
and quality assurance specialists that are needed by
your business. If a consumer is provided the option of
gathering the information s/he needs without accessing
an agent more agents are free to handle calls that can’t
be resolved with self service. The market for speech
recognition engines is continually evolving. Consequently,
the development platform should support multiple ASR
engines, letting you select the appropriate engine for
each individual application development effort.

Additional speech capabilities to look out for include:

• Does the tool support speaker verification capabilities
of one or more speech engine vendors?

• What other areas of speech deployment are being
supported? Dynamic grammars, for example, can be
used to simplify complex application development.

Most of the top ASR vendors are now exposing their ASR
engines through MRCP, a standard that allows using the
same client with different engines

TTS
Text-to-speech (TTS) is a technology that allows you
to create a real-time link between text-based content in
your database and a customer awaiting an immediate
reply. TTS can read any text out loud without using pre-
recorded prompts. This technology is mature; it has been
validated by market deployments and is already largely
used in telephony services provided by carriers and
enterprises alike.

The development platform should support multiple TTS

pronexus.com | 2934 Baseline Road, Suite 301, Ottawa, ON K2H 1B2 | Tel +1.877.766.3987 | Fax +1.613.271.8388

- 5 -

Selecting an Interactive Voice Response Rapid Application
Development Tool

Pronexus
Pronexus is the creative force behind VBVoice, recognized as one of the most seasoned and powerful IVR development toolkits available
today. After 20 years of consistent innovation and technological advancement in the field of IVR development, Pronexus has expanded its
product range to includeVisualConnect™. Pronexus’ commitment to innovative, future-proof solutions is demonstrated by our dedication to
offering this new functionality as well as our status as an established Microsoft Silver Partner. VBVoice integrates with the latest versions
of Microsoft® Visual Studio, enabling use of familiar programming skills and industry-standard programming languages. The intuitive visual
call flow environment and programmable controls as well as the time-saving features of VBVoice, such as a multilingual prompt library
and many sample applications that help new users to learn and understand toolkit functionality, make complex IVR applications built on
VBVoice easy to develop and quick to deploy.

engines. Most of the top TTS vendors are now exposing
their ASR engines through MRCP, a standard which
allows using the same client with different engines.

The flexibility to mix and match TTS engines through
a MRCP connector is important, because it offers the
choice of the desired engines and voices.

Deployment Considerations
Another important consideration for developers is the
ease of product licensing and deployment. This is
particularly true for commercial application developers,
such as system integrators and Independent Software
Vendors (ISVs). Ideally, deployment of a finished
application should be as painless as possible, yet assure
the developer of the licensing integrity of the finished
product.

Consider whether the platform requires the use of
“dongles” for commercial application deployment, or
whether the process is only software-enabled. The latter
approach allows for easy upgrades and also has the
potential for the re-licensing of developed applications to
other customers.

Support for Standards
Depending on your organization, standards such as
.NET or VoiceXML can also play an important role in your
tool selection. In the author’s opinion, however, other
considerations as outlined in this document will likely
be more important in the day-to-day development work.
In addition, standards may impose restrictions on your
development effort, since certain new developments and/
or specific capabilities that you are looking for have not
yet been reflected in a generally slower evolving public
standard.

VoiceXML, for example, has an acknowledged weakness

in the area of call control. For the foreseeable future,
other platforms will continue to exist, and some of
them are beginning to extend to support standards
environments.

Programming in .NET and C#, which are industry
standard programming languages, eliminates the need
to learn proprietary languages and shortens the learning
curve for developers new to the Interactive Voice
Response (IVR) & telephony landscape without the need
to worry about the telephony hardware APIs or media
processing layers. Thereby allowing you to rapidly create
powerful IVR and voice-enabled communication solutions
while significantly reducing your time to market.

Go to pronexus.com to download the
VBVoice 10.2 IVR toolkit or contact
sales@pronexus.com to get your
application up and running.

