
vbvoice.com | 135 Michael Cowpland Dr. Suite 120, Ottawa, ON K2M 2E9 | Tel +1.877.766.3987 | Fax +1.613.271.8388

1

Porting an Existing VBVoice™ Application into
a Windows® Service

The information in this document applies to the following:
•	 Applications	that	need	to	run	automatically	at	startup.
•	 Applications	running	on	unattended	servers.
•	 Situations	where	the	decision	to	turn	the	application	into	a	service	occurred	late	in	the	development	process,	or	the	

application	was	originally	developed	from	a	VBVoice	shipped	example.
•	 Developers	who	want	the	ability	to	run	the	application	in	both	desktop	and	web	service	modes,	as	debugging	a	

desktop	application	is	easier	than	debugging	a	Windows	service.

Upgrading a VBVoice example to the latest version of Visual Studio:
•	 Watch	this	video	for	a	quick	review	of	the	upgrade	process.

General overview of the porting process:
1.	 The	first	step	is	to	configure	the	main	form	to	start	the	VBVoice	telephony	system	automatically.	
2.	 The	second	step	is	to	make	the	application	accept	command-line	switches.	Command-line	options	determine	how	the	

application	will	behave	on	startup.
3.	 A	service	component	is	then	added	to	the	project.
4.	 An	installer	component	is	added	to	the	project.
5.	 Finally,	the	developer	must	add	more	command-line	switches	to	control	the	service.

https://www.youtube.com/watch?v=eXO1Ez8zLrU

vbvoice.com | 135 Michael Cowpland Dr. Suite 120, Ottawa, ON K2M 2E9 | Tel +1.877.766.3987 | Fax +1.613.271.8388

2

Step One: Configuring the main form to start VBVoice automatically
This	action	is	accomplished	by	using	a	Timer Class	in	the	form.	The	auto-start	will	then	work	in	both	desktop	and	web	
service	modes.	This	process	is	fairly	standard	for	VBVoice	users;	for	a	quick	refresher	on	how	this	is	done	using	one	of	our	
examples,	watch	the	video	“Porting an existing VBVoice application into a Windows Service”	starting	at	6:09.	

https://youtu.be/gIDkZIdaMqo?t=6m9s

vbvoice.com | 135 Michael Cowpland Dr. Suite 120, Ottawa, ON K2M 2E9 | Tel +1.877.766.3987 | Fax +1.613.271.8388

3

Step Two: Making the application accept command-line switches
The	steps	below	will	allow	you	to	determine	how	the	application	will	behave	on	startup.	Adding	arguments	to	the	Main
method	allows	you	to	enable	the	application	to	run	as	a	service.	Otherwise,	the	application	runs	as	a	standalone	desktop	
application.

1.	 Move	the	static	Main method	to	its	own	class,	if	the	method	is	not	there	already.
2.	 In	order	to	check	the	commandline	switches	you	need	to	add	arguments	to	the	Main method,	which	is	an	array	of	

strings.
3.	 When	the	application	runs	with	no	arguments,	the	args	array	(arguments	array	of	strings)	will	be	empty;	this	is	the	

default	behavior.	We	recommend	running	an	application	with	no	arguments	as	a	standalone	desktop	application.
4.	 Choose	the	commandline	switch	“service”	to	make	the	application	run	as	a	service.

 

vbvoice.com | 135 Michael Cowpland Dr. Suite 120, Ottawa, ON K2M 2E9 | Tel +1.877.766.3987 | Fax +1.613.271.8388

4

Step Three: Adding a service component
This	step	describes	how	to	create	the	object	that	will	enable	the	application	to	run	as	a	service.

1.	 Inherit	from	System.ServiceProcess.ServiceBase
2.	 Give	it	a	unique	name.
3.	 Impliment	OnStop method:	Application.Exit();
4.	 Impliment	OnStart method:

a.	 Create	new	STA	thread	and	start	it
b.	 Instantiate	the	callflow	form	and	pass	it	to	Application.Run

5.	 Execute	the	same	(or	similar)	code	to	start	as	a	desktop.
6.	 Remove	Single-Threaded	Apartment	(STA)	from	the	original	thread	served	by	Main.
7.	 Instantiate	the	service	component	and	pass	it	to	ServiceBase.Run	in	Main.

vbvoice.com | 135 Michael Cowpland Dr. Suite 120, Ottawa, ON K2M 2E9 | Tel +1.877.766.3987 | Fax +1.613.271.8388

5

Step Four: Adding an installer component
This	section	lists	the	steps	to	adding	an	installer	to	the	application	so	that	the	service	can	be	installed.	For	service	
applications	to	run,	an	installer	component	MUST	be	added	to	your	project.

1.	 Inherit	from	System.Configuration.Install.Installer
2.	 Add	to	members	of	types:

a.	 System.ServiceProcess.ServiceProcessInstaller

b.	 System.ServiceProcess.ServiceInstaller

3.	 Initialize	both	members	in	the	constructor.	To	do	this:
a.	 Define	which	account	you	want	the	service	to	run	on.
b.	 Give	the	service	a	user	friendly	name,	but	unique.
c.	 Define	how	you	want	the	service	to	start.
d.	 Add	the	dependancy	as	needed.

4.	 Mark	your	installer	component	with	the	attribute	RunInstaller(true)
5.	 Alter	the	registry	to	change	the	commandline	used	to	start	the	service.
6.	 At	this	point	you	could	register	and	unregister	the	service	using	the	commandline:	InstallUtil <yourapp.exe>

vbvoice.com | 135 Michael Cowpland Dr. Suite 120, Ottawa, ON K2M 2E9 | Tel +1.877.766.3987 | Fax +1.613.271.8388

6

About VBVoice
Pronexus	VBVoice™	Interactive	Voice	Response	(IVR)	toolkit’s	latest	release,	VBVoice	8.20,	synchronizes	all	Pronexus’	
offerings	with	support	for	development	in	Microsoft®	Windows® 8,	8.1	and	Windows	Server®	2012	using	the	latest	
Visual	Studio®	2013.	VBVoice	8.20	includes	Microsoft®	Lync™	interoperability,	secure	media	and	proprietary	call	control.	
Download	VBVoice	IVR	toolkit	today	to	discover	how	easy	it	is	to	develop	an	IVR	application.

Step Five: Adding more commandline switches
The	final	step	in	porting	your	existing	application	into	a	Windows	Service	is	adding	the	commandlines	start and stop	and	
register and unregister.	The	process	for	accomplishing	this	is	very	similar	to	adding	the	“service”	commandline	switch	
described	above	in	Step	Two.

Start and Stop:

Register and Unregister:

Conclusion
Often,	it	is	useful	or	even	required	to	turn	an	existing	desktop	application	into	a	web	service.	Maintaining	both	a	desktop	
application	and	a	web	service	application	is	useful	for	the	purposes	of	debugging,	ensuring	that	your	application	runs	
smoothly.	Using	commandline	switches	allows	you	to	easily	establish	a	self-contained	application.	Commandline	switches	
also	simplify	the	installation	and	deployment	process,	especially	on	remote	machines	using	terminal	services.

